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Abstract - In this work, concepts fr6m nonlinear 
dynamics are applied for be design of analog frequency 
dividers of variable order. The design takes advantage of the 
multiple Arnold tongues of highly nonlinear oscillators. 
The variation in the division order is obtained through the 
modification of a circuit parameter, like, for instance, the 
capacitance of a varactor diode. Here the design of a bipolar- 
based analog frequency divider, whose division order can be 
6, 7, 8 or 9, is presented. A new simulation tool is proposed 
for the harmonicbalance analysis of high-order .divisions. 
The circuit has been manufactured and experimentally 
characterized, with excellent results. 

LINTRODUCTION 

Bifurcation theory offers unexplored possibilities to 
obtain operation modes and analog functions that cannot 
be implemented from standard design concepts. In 
particular this paper presents the design of an analog 
frequency divider of variable order 6 to 9. The advantage 
of this analog division is the possibility of implementation 
at high microwave frequencies. 

When connecting an input generator to a free-running 
oscillator, synchronization bands are theoretically formed 
at all the rational ratios between the self-oscillation 
frequency w, and the input generator frequency Q,,, i.e., 
cla/~&,=M/N [l]. The width of the synchronization bands 
increases with the input power Pi,, giving rise, in the plane 
defined by qn and Pi”, to tongue-shaped curves (one for 
each M/N), delimiting the region of synchronized behavior. 
These curves are called Arnold tongues [l]. Their width 
usually decreases fast with M and N. 

In general, outside the synchronization bands, there is a 
regime with two incommensurate fundamentals or quasi- 
periodic regime. Thus, as Q, is modified (system 
parameter), periodic and quasi-periodic intervals alternate. 
In other cases, the operation regime between the periodic 
intervals (also called windows) is chaotic, this giving rise, 
as the parameter evolves, to what is called a period-adding 
route to chaos [l]. In this case, periodic and chaotic 
intervals alternate versus the parameter (~3. 

The synchronization bands are delimited (at each end) 
by bifurcations of saddle-node type [l-2]. When tracing 
the periodic solution curve (in terms of output power, for 
instance) versus a suitable parameter, such as Q,, the 
saddle-node bifurcations give rise to turning points 

(infinite-slope points) [3]. Thus, synchronization curves 
are typically closed. 

The natural formation of Arnold tongues (M/N) in 
injected oscillators should allow divisions of any order. To 
obtain wide Arnold-tongues, a careful nonlinear design 
must be carried out. The objective here is the widening of 
periodic windows of large division order l/N. Another 
objective is to be able to change the division order of the 
divider circuit, for a given input-frequency band qnl, wd. 
Advantage can be taken of the fact that bifurcation 
patterns, versus different parameters of the same system, 
are often similar. This should enable varying the division 
order versus a suitable parameter, such as a varactor 
voltage. Two parameters will be considered in the analysis: 
the input frequency Q”, to ensure a certain operation band, 
and an additional parameter, to change the division order. 
The latter could be the capacitance of a varactor diode. 

The PoincarC map technique [3] enables a simple 
determination of periodic windows, but is only applicable 
to circuits that can be simulated in time domain. In 
addition, even when applicable, simulations are usually 
unbearable long. This limits the use of the tool to circuit 
analysis, rather than actual design. On the other hand, 
harmonic balance (HB) is efficient for frequency divisions 
of low order, but usually lacks accuracy for divisions of 
high order. In previous works, cascades of frequency 
divisions by two have been analyzed through HB [4]. To 
our knowledge, it has never been employed to obtain high- 
order divisions by synchronization. The development of 
efficient simulation tools for this kind of behavior has been 
another objective here. 

A variable order divider, based on a bipolar transistor, 
has been manufactured and experimentally characterized. 
However, the aim is not to present an ultimate design, but 
to show the possibility of using principles and knowledge 
from bifurcation theory to obtain specific circuit 
performance. 

II.CIRCUITDESIGNAND OPERATION 

In the design of the variable-order frequency divider, a 
relatively low input frequency f$2 GHz, has been chosen, 
to facilitate the use of time-domain tools (in addition to 
frequency-domain analysis and measurements). The first 
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stage to obtain an analog divider is the design of a free- 
running oscillator. Here the self-oscillation frequency was 
eO.2 GHz, to enable high order divisions. In order to 
have wide Arnold-tongues (or synchronization bands 
l/N), the free-running oscillation must be very nonlinear, 
with high harmonic content. In this design, the active 
element is a bipolar transistor. The circuit topology is 
similar to that of a classical Colpitt’s oscihator (Fig. 1). The 
principles of the design are, however, very general, and 
could be applied to other active devices and circuit 
topologies. 

II. CIRCUIT ANALYSIS 

Fig. 1. divider. 

The bipolar transistor is biased near cut-off. The values 
of the active elements are selected so as to increase the 
nonlinearity of the limit cycle (Pig. 2). The transistor is.in 
cut-off for about half of the oscillation period, which gives 
rise to high harmonic content. The input signal of the 
divider is introduced through the base terminal and the 
output signal is extracted at the emitter terminal. %e 
output extraction through a buffer amplifier at the collector 
terminal is also possible. 

VCE W) 

Fig. 2. Limit cycle of the free-running oscillation. 

In the presence of a sinusoidal generator of frequency 
r~,,, the synchronization of a given harmonic component 
Nq to the input signal gives rise to a division by N. This 
synchronization is more easily obtained for higher 
amplitude of the harmonic term No&. A larger 
synchronization bandwidth can also be expected for higher 
harmonic amplitude. 

A. Analysis through the Poincark map. 

The synchronization bands, in terms of a given 
parameter, can be determined through time-domain 
integration by using the technique of the Poincare map. In 
this technique, once the steady state has been reached, 
samples are taken at integer multiples of the input 
generator period nTi,. I f  the solution has the same period 
as the input generator, a single point is obtained. If  the 
period of the solution is a multiple of that of the input 
generator period NTh,, N different points are obtained. This 
analysis has been carried out in Fig. 3, where samples of 
the collector current Ic are traced versus the capacitance 
C,, for constant input voltage V, = 0.5 v  and $,,=1.9 GHz. 
According to the capacitance value, divisions by N = 6 to 
N = 12 can be obtained. The capacitance interval for each 
division order is about 2 pF. Thus, the use of a varactor 
diode should enable a simple variation of the division 
order. . 

For this input voltage value (Vi, = 0.5 v), there are narrow 
intervals of chaotic behavior, between the frequency- 
division windows. The chaotic solutions appear at the 
saddle-node bifurcations (delimiting the synchronization 
bands), through an intermittency process [2]. The chaotic 
intervals are relatively narrow and, as the input voltage 
increases, become negligible small, for some division 
transitions. For lower input voltage, the behavior between 
the periodic windows is quasi-periodic. 

Two are the drawbacks of the Poincare map technique 
when analyzing microwave dividers: on the one hand, not 
all the circuits can be simulated in time domain. On the 
other hand, the computation time is too high. 

B. Analysis through harmonic balance 

When employing frequency-domain techniques for the 
analysis of high-order divisions, accuracy problems may 
arise, due to the high-harmonic value of the input 
generator, with respect to the free-running oscillation. 
Another problem comes from the fact that each region of 
periodic behavior is bounded by two saddle-node 
bifurcations, giving rise to turning points of the 
synchronization curve. 

In [2-4], the division curves are obtained by introducing 
an auxiliary generator (AG) into the circuit. When using a 
voltage AG, it is connected in parallel at a circuit node, 
close to the transistor terminals. The AG must fulfill a non- 
perturbation condition of the steady state (given by a zero 
value of its associated admittance Yr). For the analysis of a 
possible division by N, the frequency of the generator is 
fixed to ~~o=o&,/N. In [2-4], for each value of the analysis 
parameter, the AG amplitude AAo and phase +A= are either 
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optimized or calculated (through an error-minimization 
algorithm) to fulfill x=0. This procedure, based on the 
optimization/calculation of the AG amplitude and phase, 
does not seem to provide good convergence results for 
divisions of high order. 

Fig. 3. Poincare map of the frequency divider, Collector 
current Ic versus the capacitance C,. 

The new procedure is the following. An initial 
optimization is carried out, in the three variables c~,,, AAG 
and &o, to fulfill Yr=O. From the resulting point Q,, AAGo 
and QAAGo, a sweep is carried out in the AG phase &o, 
between Q..oo and $*oo + 2rVN. For each point of the sweep, 
the two variables ho and the parameter (in this case, 
either co,. or C;) are optimized or determined (through a 
suitable error-minimization algorithm), in order to fulfill 
Yr=O. This technique is illustrated in Fig. 4, obtaining the 
division band l/8 versus Ci. Each solution point of the 
phase sweep (Fig. 4b) is a point of the closed 
synchronization curve (Fig.4a). 

Note that the circuit variables and the parameter are 
periodic in phase (Fig. 4b) and do not exhibit turning 
points versus this variable, which enables a 
straightforward tracing of the synchronization curve. The 
outer turning points delimit the synchronization band. A 
complementary stability analysis is necessary to determine 
the stable solution section. In this case, the upper part of 
the curve (between the two outer turning points) is stable. 
The synchronization bandwidth is given by the absolute 
minimum and maximum of the curve C, ($*c), i.e, 
dC,/d$*o=O (see Fig. 4b). This enables a simple numerical 
technique for tracing the synchronization loci. Note that, in 
the design, the purpose will be to increase the size of the 
synchronization curves and this simulation technique 
enables fast design tuning. In Fig. 5, two synchronization 
curves are traced, through the frequency-domain, 
technique, versus C,. For the sake of clarity of the 
representation, only two curves have been included, 
corresponding to the division orders N=7 and N=8. In each 

case, the upper half of the closed curve is stable. All the 
circuit parasitics have been taken into account. The good 
agreement with Fig. 3 is evidenced. The increase in the 
output power with the division order comes from the 
associated reduction of the divided frequency. Two 
measurement points have been superimposed. In the 
evaluation of this first prototype, different capacitances 

-have been used. 
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Fig. 4. New technique for obtaining the closed 
synchronization curves, through phase sweep. Maxima 
and minima determine the synchronization band and the 
jump points. 

varactor Voltage (V) 

Capacitance (pF) 

Fig. 5. Synchronization bands in frequency domain. 

To determine the synchronization bandwidths in terms 
of the input frequency, the corresponding Arnold tongues 
are traced in Fig, 6. The capacitance is now fixed to C&7 
pF. The influence of the base resistance has been studied. 
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The lower the value of this resistance, the larger the 
synchronization bandwidth. Measurement points for R=62 
Ohm also included, for division order 7 to 9. In fact, 
frequency-division bands with order N=2 to N=12 have 
experimentally been observed. 

1.5 1.6 1.7 1.6 1.9 2 2.1 2.2 2.3 2.4 2.5 

Input Frequency (GHz) 

Fig. 6. Arnold tongues versus input frequency for two 
values of the base resistor. 

The output spectrum of the variable-order divider, for 
two different values of the capacitance C,, is shown in Fig. 
7. In both cases, the input frequency is fixed to &=I.534 
GHz. As observed, the initially free-running oscillator has a 
rich harmonic content. Fig. 7a shows the typical triangular 
spectrum about the eighth harmonic component, proving 
the actual synchronization phenomenon. In Fig. 7b, a 
division by N=7 has taken place. In Fig. 7c, the division 
order is N=8. In agreement with the simulations, the 
variation of the capacitance gives rise to a modification of 
the division order. The measured phase noise of the 
divided frequency component is, in both cases, about -70 
dBc/Hz at 1 KHz offset. This divided component must be 
selected through proper filtering at the circuit output. The 
measurements of the synchronization bandwidth versus 
the input frequency have been superimposed in former 
figures 

V. CONCLUSION 

The design of an analog frequency divider with variable 
division order has been presented. The design of the 
divider relies on the multiple Arnold tongues of highly 
nonlinear oscillators. The circuit is analyzed through the 
Poincare map and through the phase sweeps of an 
auxiliary generator. The latter technique enables fast 
design tuning. The modification of the division order is 
achieved through variation of a circuit capacitance. A 
frequency divider with variable order N=6 to N=9 has been 
designed and experimentally characterized, with excellent 
results. 
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cc> 
Fig. 7. (a) Triangular shape of the near-synchronization 
spectrum. (b) Division by 7, fb=1.534 GHz (C,=2.9 pF). (b) 
Division by 8, fi, 1.534 GHz (Ci=4.7 pF). 
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